Serie 07 - Solution

Preamble

1.1 Work function

The work function W of a material is defined as the energy required to extract
an electron from the Fermi level to the vacuum level. Essentially, if enough
energy is supplied to an electron, it can be extracted from the material. A
direct manifestation of this phenomenon can be seen in the photoelectric effect.
When light is shone onto a metal, electrons are emitted if the photons have
sufficient energy.

Conventionally, the vacuum level energy FEjy is defined as zero. Therefore,
any particle that is gravitationally or electrically bound has negative potential
energy, meaning it requires a positive energy to free it. Consequently, the work
function is always positive.

W=¢-q=FE—E; (1)
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Figure 1: a) Working function. b) Electron affinity.

1.2 Electron affinity

As can be easily understood, the work function can be annoying to use in the
case of a semiconductor. In a doped semiconductor, the Fermi level will change
depending on the doping level, and hence the work function will also change.
Therefore, in this case, we prefer to use the electron affinity instead.

The electron affinity x is defined as the energy required to extract an
electron from the conduction band level to the vacuum. Like the work function,
the electron affinity is positive due to the convention of defining the vacuum
level energy as zero.



x=x-q=FEy—E. (2)

An illustration of the electron affinity can be found at Fig. 2.

1.3 Connecting Materials with Different Work Functions

In the same structure, the vacuum level and the Fermi level should always be
continuous. Therefore, when we put two materials with different work functions
in contact, we will see the creation of an electric field and the movement of
charge. This will locally change the work function and ”"bend” the energy level
to match the preceding conditions. The amplitude of this bending is necessarily
equal to the difference in the work functions of the two materials. In the case
of MOS structures, this will create the depletion region in the base and the
accumulation of charges on the gate.

The most important parameter is the difference between the Fermi level and
the other energy levels. Therefore, graphical representations can have multiple
references. In this course, we prefer to keep the vacuum level constant. However,
in other courses, especially ones which include band diagram drawing, they
prefer to keep the Fermi level constant at 0 bias.
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Figure 2: a) Constant Ey convention used in the MOS structure in this course.
b) Constant Ey convention used in the MOS structure.

1.4 Interfacial charges

During the course, you learned about the charge distribution in an ideal MOS
structure. However, in reality, charges can get trapped in the oxide layer or at
the junction between the base and the oxide. There are many factors that can
lead to the appearance of these charges, such as wafer or oxide contamination
during the fabrication process. These parasitic charges are known as interfacial



charges (Qss), and they can significantly impact the characteristics of the MOS
structure. Even if some of the charges are trapped in the oxide, we model them
by adding them at the junction between the oxide and the channel.
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Figure 3: a) Ideal MOS structure without interfacial charges. b) Non-Ideal
MOS structure with interfacial charges.

In Fig. 3, Qs and @,,, are shown as rectangles, but in reality, the interfacial
charges @55 and the charge accumulated on the gate @,, are closer to a Dirac
function. These small rectangles are a graphical representation of these charges.

1.5 Sign convention

Here we want to quickly talk about the difference between ”difference” and
”drop”. Let’s take an example.
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Figure 4: a) Capacitor topology. b) Charge distribution. c) Electric field dis-
tribution. d) Electric potential distribution.

Take a capacitor with plate A connected to a voltage of 5[V], and its plate
B connected to ground. The two plates are separated by a distance ¢. by an



insulator with a dielectric constant e.. As electrical students, you will all agree
that the voltage difference between plates A and B will be V5 = 5[V]. Now,
we want to find this by integrating Maxwell’s equations. In the capacitor, the
electric field will be:

= Qa

E. =

€x (3)

€c

We now want to find the electric potential, and its physical definition is:
¢ =— / Edl (4)

If we integrate this over the capacitor:

o e Qa
¢AB:—/ Ecdx:—/ Eedr = —— -z
0

A €c

0
_ Q4 (5

r=t.

Since @ 4 is positive, ¢4 is negative. This is because this is the calculation for
the potential difference, which is, by definition, the inverse of the potential drop.

Because of this, knowing which sign to use can be a nightmare. In this ex-
ercise series, we will use ¢ (the only exception is the work function because of
its definition) when we talk about differences, and V' when we use drop. At the
exam, you don’t have to use this definition; the course doesn’t use it either. We
just use this to try to make the sign easier to find.

Here is a small table of correspondences between the course and this solution:

exercises = course
_¢om = Vox
'¢sc = Vb
~Pb = ®p

Given constants

KT/q=259[mV] @ T =300[K]

ni(S1) =1.5-10%[em™] @ T =300[K]
q=1.60-10""[C|

€ = 8.85 - 1071 [F/cm]

€s; — 11.7 - €0

€50 — 3.9 €0



Exercise 01

Calculate the work function difference between the metal and the semiconductor
@ms in a MOS structure. The MOS structure is composed of an aluminum gate
with a work function ¢,, = 3.2 [V] and a silicon channel with an electron affinity
x' = 3.25[V]. We assume that the silicon has a band gap E, = 1.11[eV] and a
doping concentration of N, = 104 [cm’?’] and n; = 1.5 - 1019,

Solution
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Figure 5: Drawing of the energy level in both structure.

We begin by calculating the work function of the semiconductor, denoted
as Ws. To obtain this value, we first need to determine the energy difference
between the conduction band and the Fermi level. We already have the electron
affinity, denoted as x’, that is the difference between the conduction band and
the vacuum level. In a previous series, we have demonstrated that the intrinsic
Fermi level is located at the middle of the band gap.

Eji— Eo ~ % (6)
In a previous course, we have already seen the formula that gives the difference
between the Fermi level and the intrinsic Fermi level, denoted as ¢,, depending
on the carrier concentration. In our case, we have p = N,.

by = —% In (f) ~ —228 [mV] (7)
Hence:
Ws=¢s-q=x’-q+%—¢p~q (8)
And finally:
Wins = Ey — Ep = Ey — Eo + Eg — Eyy = W — W, (9)



W =W (o, By o
e =g (v B ) mmsmlar] (10

In this type of exercise, be really careful about the signs.

Exercise 02

Calculate the maximum width of the Space Charge Region (SCR) in a MOS
structure. The doping concentration of the semiconductor is N, = 10'¢ [em ™3],
the temperature is 7 = 300 [K], and we assume n; = 1.5 - 10'% [em™3].

Solution

We will provide an explanation for a MOS structure based on a p-type semi-
conductor, as described in this exercise. However, the same logic can be easily
applied to a MOS structure based on an n-type semiconductor.

As we discussed in the course, when the gate is biased, the depletion width
increases until the threshold voltage is reached. At this point, further depletion
of holes stops and a layer of electrons is created close to the oxide. In other
words, when the threshold voltage is reached, the width of the space charge
region (SCR) stops increasing.

The threshold voltage is reached when the potential built up in the space
charge region ¢ . or Vg is equal to 2¢,. The potential built up in the space
charge region is given by the following formula:

_gN. X}

2€4c

¢sc = (11)

As in the previous exercises, ¢, is given by the following equation where p = Nj,.

_ (P~
Op = . In (m) r~ —347 [mV) (12)

As explained earlier, ¢s. = 2¢,, and we just have to extract Xp.

[ 2.20, €
Xpin = —$z300 [nm] (13)
a

Calculate the flat-band voltage Vrp of a MOS structure based on p-type silicon
doped with N, = 106 [cm’:)’]. The structure has a silicon oxide layer with
a thickness of t,, = 50 [nm], and a gate made of n+ doped polysilicon. We
assume a work function difference between the metal and the semiconductor of
¢ms = —1.1[V] and an interfacial charge density of Qs = 10'* [em™2].

Exercise 03



Solution

In the course, the flat-band voltage has been defined as the gate-source bias
voltage Vs needed to just wipe out the SCR. In other words, the flat-band
voltage occurs when no built-in potential appears in the semiconductor, i.e., no
band bending.

In this exercise, we are dealing with a MOS structure based on a p-type semi-
conductor and with positive interfacial charges. The addition of these charges
will change the electric field and, therefore, the distribution of the potential.
In all cases, the built-in potential of the MOS should always be ¢,,s. In Fig.6
d) (green), we can see a case where we have applied a gate-source bias voltage
of Vys = ¢ms in a non-ideal MOS structure that contains interfacial charges.
We clearly see a built-in potential in the semiconductor and a bending of the
potential in the region, implying a SCR.

To solve this exercise, we will draw the charge redistribution in the MOS
structure in the flat-band and derive the electric field and the built-in potential.
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Figure 6: a) Charges in MOS structure at V3y = Vpp. b) Electric field in MOS
structure at Vpy = Vpp. c) Potential in MOS structure at V3, = Vpp. d)
Potential in MOS structure for different bias.



Q(x) =Qum - d(x+tox) + Qss - 6 () (14)

Where § () is of course the Dirac function.

G if £ € [~toq;0
E(x) fr— €ox ’ iz e [ O3 ] (15)
0 , else
Aorp , ifx €] —tos]
P(x) =4 —2= .0 | ifa€ [~lo;0] (16)
0 , else
The overall MOS structure must be neutral. In this case, Q,, = —Qss; therefore:
tO‘T S8
A(z)FB = _sti = _Q (17)
EOI COCE
Finally:
€0€oxr 2
Cop = —= ~ 69 [nF/cm?] (18)

tOI
Be careful! During the derivation of A¢rp, @Qss was the interfacial charge
quantity, but the charge used in the calculations should be ¢Q)ss, where ¢ is the
elementary charge.

qQss ~ 16 [nC/cm?] (19)
Vip = dms + Adrp = dms — qg >~ —-1.33[V] (20)

Solution bis

Another method to obtain the same result is to recognize that at flat band,
the interfacial charges are neutralized by the charge stored on the gate. In this
case, we simply need to determine the additional voltage required to store the
appropriate amount of charge on the gate. Since the MOS structure acts as a
capacitor in this scenario, we have:

Q=C-U (21)

In this case Q = Qqs, C = Cpp and U = —A¢pp.



